2023-10-19组会报告摘要02

本次汇报的题目是《基于Autoformer的分布式异常检测方法研究》,主要从科研背景、科研问题、科研目的、研究内容、研究计划几方面展开。

科研背景:

智能电网使用高级计量基础设施或智能电表收集用户数据,以监控电力流量,并相应地适应能源需求和供应变化。智能电表提供了额外的好处,例如快速停电检测,更快的服务恢复能力,以及通过提供详细的用电信息来更好地控制计费,从而使客户能够做出明智的决策

智能电网容易受到各种影响,如故障设备、停电、设备故障、能源盗窃和网络攻击,这些都会导致非技术损失(NTL)。特别是,对手可能会利用网格中的安全漏洞发动复杂的网络攻击(中断服务,破坏基础设施和窃取用户数据),这可能会影响网格的正常运行。NTL可以通过检测电网中的异常来识别,这反映在智能电表收集的数据中。

科研问题

传统机器学习方式存在以下问题:

  • 连接性-集中式方案需要稳定的连接才能将数据持续传输到服务器。由于物联网设备通常部署在远程环境中,因此保持稳定的互联网连接可能具有挑战性。
  • 带宽-当有数千个IoT设备参与机器学习任务时,将数据传输到集中式服务器所需的带宽可能非常大。
  • 延迟-将数据传输到服务器,在云中运行机器学习算法,导致高延迟,影响实时应用程序。

现有的时间序列异常检测方法仍存在不足:

  • 长序列中的复杂时间模式使得注意力机制难以发现可靠的时序依赖
  • 基于Transformer的模型不得不使用稀疏形式的注意力机制来应对二次复杂度的问题,但造成了信息利用的瓶颈

科研目的:

  • 分布式策略,使用联邦学习进行智能电网中的异常检测。由于FL中的大部分计算发生在本地设备中,因此与集中式训练相比,联邦学习中的连接性,带宽和延迟问题的影响减少了
  • 基于Autoformer构建时间序列的异常检测模型。实现时序依赖的挖掘,进行时间序列的异常检测。

研究内容:

提出基于Autoformer网络的异常检测和诊断模型,并使用基于自相关的序列编码器来执行推理。使用基于焦点分数的自调节来实现稳健的多模态特征提取和对抗训练,以获得稳定性。针对之前提出的模型在实验过程中的表现进行改动,模型结构如下图:

基于Autoformer的异常检测模型结构